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Abstract. Experiments were performed to study the pressure drop behavior inside an
atmospheric vertical fluidized bed with 100 mm internal diameter, divided into 5 sections of
50 mm high each. The fluidized bed under analysis is established by fluidizing two size ranges
of silica ballotinis, 355-425 and 600-710 µm, using three distributors types: perspex, metallic
mesh and ceramics. The classical force balance equations were modified to account not only
for the weight and buoyancy but also for the presence of bubbles and drag on clusters of
particles. Different dense phase voidages, as well as different ratios of volumetric flow rate
through the bubble phase versus volumetric flow rate through an equivalent dense phase
section were considered. Finally, a model is presented covering a range of fluidization
regimes for several slices inside the fluidized bed, from minimum fluidization to incipient fast
fluidization.
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1. INTRODUCTION

In a recent work, Paiva et al. (1998), using a two-phase model (Davidson, 1963) for the
fluidized bed, recognized a decrease of the ratio pressure drop/height of the bed, in opposition
to the generally accepted idea of a constant value of this ratio. That behavior explicitly
reflects the increase in the average global porosity of the whole bed, with the augmentation of
the mass flow rate of the fluidizing medium. In order to have a better understanding of the



phenomenon, further studies were developed to lounch some physical insight on the apparent
drag reduction recorded.

Using different dense phase voidages throughout the height of the bed, a bubble’s
voidage deduced from the two-phase theory, with the bubble growth explicitly incorporated,
as well as a drag coefficient accounting for the dissipation energy on the incipiently entrained
clusters of particles, a model is presented that covers a range of fluidization regimes for the
slices inside the bed, from minimum to incipient fast fluidization state.

Finally, the fluid dynamics of the bottom of the bed being of interest for both Stationary
and Circulating Fluidized Beds, the pressure drop across the air distributor was measured,
using three different types- perspex/acrylic glass perforated plate, metallic mesh and ceramics,
to give some insight into fluidization quality of that region of the bed.

2. EXPERIMENTAL

The experimental set up consisted of a fluidized bed made with a perspex tube 100 mm
id, 3 mm thick and 500 mm high, as can be observed in Fig. 1.
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Figure 1- Photography and schematics of the experimental setup: 1- primary beds; 2-
transport disengaging zone; 3- thin- plate battery; 4- pressure reduction.

Air was used as the fluidizing medium, at atmospheric conditions, its flow rate being
measured with a battery of three thin-plate orifice flowmeters. Differential pressure drop
measurements on the orifice plates were sent to a data acquisition system.

The experiments were all carried out with spherical glass ballotinis previously screened
and statistically weighed with t tests using SPSS, at the 95% confidence level, in the ranges of
355-425 and 600-710 µm. The density of the particles was measured and found to have an
average value of 2500 kg/m3. Fluidizing air superficial velocities were in the 0- 1.4 m/s range,
at standard pressure and temperature. The static bed height was of 250 mm above the
distributor plate. The distributors used were a perspex plate, perforated with 984, 0.3 mm
equally spaced holes, a metallic mesh plate, and a ceramic plate. Their pressure drop
measurements can be seen in Fig. 2. To help aiming at an uniform flow distribution, two
consecutive primary fixed beds, the first filled with 20 mm and the second with 3 mm
diameter silica spheres, were used in the windbox section of the air duct, as can bee seen from
Fig. 1 and explained elsewhere (Paiva et al., 1998).

Pressure drop accumulated measurements were made every 50 mm, in order to have
slices of 50, 100, 150, 200 and 250 mm high. Three pressure probes were used at each level,



set 120º apart, starting just above the distributor plate. Each probe was calibrated against U-
tube water pressure gauges. As the probes have a fixed position as bed expands with flow
augmentation, the data presented for each bed slice’s pressure drop is actually a measure of
the global voidage increase of that portion of the bed.

All the experiments were conducted  starting with high air flows and after having the bed
well fluidized. Then, values for each slice’s pressure drop were recorded for consecutively
decreasing flowrates, corresponding to U0/Umf ratios from 5 to 1. The data acquisition system
used a sampling frequency of 5 Hz to ensure sufficient accuracy in the statistical analysis, an
average of 1000 samples being taken for each spectrum; those readings were then weighed in
order to output values corresponding to arithmetically averaged one second intervals. Later
on, using a suitable program, these were determined for each position of the flowmeter and
the dubious points eliminated according to Chauvenet’s criterion (Holman, 1994).

3. RESULTS AND DISCUSSION

As stated on common literature on fluidization, there is a point of minimum fluidization
when a force balance leads to the following equation (Kuni and Levenspiel, 1969),

∆P  = (ρp - ρf) (1 - εmf)  xmf  g                 (1)

in which xmf is the bed’s height at minimum fluidization conditions, εmf the bed voidage at that
point and g the acceleration of gravity.

Assuming that the dense phase remains at minimum fluidization conditions, according to
the two-phase theory (Davidson and Harrison, 1963), any increase in flow rate beyond that
point leads to,

∆P = (ρp - ρf) (1 - εmf)  xf  g     (2)

with xf being the bed’s height attained in a particular regime, measured from the distributor
plate till the free surface of the bed. This equality is usually considered to constitute the
fundamental fluidization condition (Couderc, 1985).

One main purpose of many fluidization studies is to understand the behavior of rising
bubbles in gas fluidized beds using ordinary distributors. The relative velocity between the
dense phase and bubbles should be the rise velocity of single bubbles in beds at minimum
fluidizing conditions (Davidson and Harrison, 1963, Davidson et al., 1977), or

 
    (3)

As one can see from the published correlations, namely Rowe (1972), Werther (1976),
Yacono (1975), Yasui and Johanson (1958), Park et al. (1969), Geldart (1972) and Darton et
al. (1977), estimating Db, the equivalent spherical diameter of bubble, is presented, as a
general rule, in the form

Db = K (U0 – Umf)
n’     (4)

K being a numerical constant depending on the height of the bed, the particle diameter and/or
the number of holes in the distributor plate, and n’ a numerical constant. Combining Eqs. (3)
and (4), allows expressing Ubr in a general form:

Ubr = k (U0 – Umf)
n     (5)

b
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again with k and n as numerical constants. Then, the absolute rise velocity of bubbles, Uba, in
common bubbling beds (Kunii and Levenspiel, 1969) shall be given by

Uba = (U0 – Umf ) + k (U0 – Umf)
n     (6)

On a superficial velocity basis the upward flow of gas in the dense phase is Umf while
through the bubble phase is Uba + β.Umf, (Davidson and Harrison, 1963). Thus, the total gas
flow in the bed can be expressed as

U0 = (1 – δ) Umf + δ (Uba + β Umf)      (7)

where β is a factor representing the number of times the bubbles are processing the amount of
gas passing by an equivalent section of the dense phase (Kunii and Levenspiel, 1969).

The expression of the volume fraction of bubbles in a single slice of the bed,
(Vbubbles/Vbed)i, is then:

    (8)

where Umfi is the minimum fluidization velocity for the slice i, n takes a value of 0.8 and k is a
function of x, as deduced from Darton et al.(1977) work, in the form

  (9)

In the above equation D is the bed diameter and No is the plate’s number of orifices.
Introducing the pressure drop at minimum fluidization conditions, again for a certain slice i,

Σ∆Pmfi = (ρp – ρf) (1 – εmf)  xi  g   (10)

where xi is the distance from the distributor plate to the slice under analysis. Equation (2) can
be adapted so that

                  (11)

It is therefore no longer suitable to account for the pressure drop due to the weight of
particles in a certain section of the bed solely on a volume basis corrected by the dense phase
voidage, when fluidization states pass from incipient to bubbling regimes. The effect of
bubbles on the overall voidage should be accounted for.

Typical quantitative data, representing accumulated slice’s pressure drop, Σ∆Pi, versus
superficial velocity values, U0, are presented, regardingg two size ranges: 355-425 µm and
600-710 µm, Figs. 2 (a) and (b).

As can be noticed, pressure drop through slices of constant height reveals a decreasing
value as mass flow rate goes beyond the minimum fluidization point. Two factors influence
cumulatively on this behavior: one is the referred leaning of particles in the slices and the
other  is the incipient entrainment of solids, as velocities increasingly approach 2 ... 3.Umf.
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Figure 2- Accumulated pressure drop per slice versus superficial velocity, ballotinis 355-425
µm (a) and 600-710 µm (b).

(slices: �: 1, ♦ : 1+2, x: 1+2+3, +: 1+2+3+4,  -: 1+2+3+4+5)

From literature, the transition from bubbling to turbulent fluidization is gradual and
occurs over a wide range of gas velocities, depending either on its properties or on equipment
scales and it has been the subject of a number of investigations (Lanneau (1960), Kehoe and
Davidson, 1971, Massimilla, 1973, Yerushalmi et al., 1976, 1978, Cankurt and Yerushalmi,
1978, Yerushalmi and Cankurt, 1978, Turner, 1978, Avidan and Yerushalmi, 1982).

Figure 3- Standard mean deviation of pressure drop measurements, σ,  versus superficial
air velocity U0, 355-425 µm.
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Figure 4- Standard mean deviation of pressure drop measurements, σ,  versus superficial
air velocity U0, 600-710 µm.

Yerushalmi and Avidan (1985) characterize the transition to turbulent fluidization by
velocities Uc− the velocity at which amplitude of pressure fluctuations peak, and Uk− the
velocity at which amplitude of pressure fluctuations level off, marking the onset  and end of
the transition, over a significant range of values. Particularly, Canada et al. (1976), and
Yerushalmi et al. (1976, 1978), who studied glass spheres with densities from 2420 to 2480
kg/m3, pressures ranging from 1 to 10 atm and mean diameters of 157, 650 and 2600 µm,
report a large span of Uc, Uk and Uk/Ut values, Ut being the particle’s terminal velocity.

From Figs. 3 and 4, representing the variation of standard mean deviation of pressure
drop measurements, σ, one seems to recognize a peak either in sizes 355-425 as in 600-710
µm, around 0.75 and 1 m/s superficial gas velocity, respectively.

Recently, Bi and Grace (1995) proposed a unified flow regime diagram in gas-solid
fluidized beds with little or no overflow  of solids, supported on experimental findings from
Grace (1986), Bi et al. (1993, 1995) and Bi and Grace (1994, 1995), based in Ar1/3 and
Re/Ar1/3 (where Re= ρfU0dp/µf and Ar= ρf(ρp-ρf)gdp

3/µf are the Reynolds number and
Archimedes number, respectively, with ρf and ρp being the gas and particle density and µf the
gas viscosity). In such diagram, the present studied cases lie close to the border line of
definite bubbling and turbulent zones, Ar1/3 values varying in the range of 0.44 to 0.75,
enforcing the proposed relation between fixed points measured pressure drop decrease and
incipient entrainment.

The overall bed pressure drop must thus be modeled through a balance of forces, by
means of the cumulative effect of weight minus buoyancy- ∆PW-B, plus the incipient
entrainment- ∆PIT:

∆PT = ∆PW-B + ∆PIT    (12)

The first term shall be affected by the increase of fractional void of bubbles in the bed’s
slices, as stated in Eq. (11); as to the second term, a coefficient CDc must account for the drag
effect on clusters of particles, as referred by Klinzing (1981). Then:
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Uf and Up being the interstitial and particle velocities, respectively, Uf−Up standing for the
slipping velocity of the incipiently entrained particles. Np is the number of particles defined
by the ratio (Vparticles/V1particle)i, in a single slice of the bed.

Combining Eqs. (1), (8) and (13), and putting it in differential form, one can yield:

   (14)

which can be numerically integrated within each slice’s limits, taking λ as a factor that
represents the drag on the particle clusters, and assuming that the slipping velocity is, roughly,
the terminal settling velocity of a single particle; the consideration for the neighboring
particles effects is done through a corrected drag coefficient CD= CDsεmf

-c, as suggested by
Klinzing (1981).

The result of applying Eq. (14) to the experiments that conducted to the data expressed in
Fig. 2 is shown by the solid lines in Figs. 5 and 6.

Figure 5- Curve fitting (solid lines) according to Eq. (14), ballotinis 355-425 µm.
(I1..5(u0)- integrated values of Eq. (14), i. e., integrated values of velocity against bed

height, for slices 1, 1+2,...,1+2+3+4+5; u0≡U0;  vy1..5j- measured pressure drop versus vxj-
measured superficial velocity− dashed points)

( ) ( )( )δερ
ε

λρρ -11
d

D
U

U

4

3
 g

dx

dP
mf3

p

2

f

2

p
mf

0
fp −






















−+−=

0 0.5 1
0

2000

4000

I5( )uo

vy5
j

,uo vx
j

0 0.5 1
0

2000

4000

I4( )uo

vy4
j

,uo vx
j

0 0.5 1
0

2000

4000

I3( )uo

vy3
j

,uo vx
j

0 0.5 1
0

2000

4000

I2( )uo

vy2
j

,uo vx
j

0 0.5 1
0

2000

4000

I1( )uo

vy1
j

,uo vx
j



In general there is a good correlation between experimental data and values obtained
from Eq. (14), exception made for the first slice where the presence of jets, flowing out the
distributor orifices, hides the global behavior of the pressure drop.

Figure 6- Curve fitting (solid lines) according to Eq. (14), ballotinis 600-710 µm.
(I1..5(u0)- integrated values of Eq. (14), i. e., integrated values of velocity against bed

height, for slices 1, 1+2,...,1+2+3+4+5; u0≡U0;  vy1..5j- measured pressure drop versus vxj-
measured superficial velocity− dashed points)

Literature (Lewis, 1949, Shanon, 1961, Wen, 1966 e Wilhelm, 1948) refers to εmf

experimental data varying from 0.36 to 0.46 for spherical particles. Dense phase voidages
varying with bed’s height used in Eq. (14) are given in Table 1. The c exponent, affecting the
drag coefficient by means of the dense phase voidage εmf, takes a value of 0.3.

Table 1. Parameters used in Eq. (14)

1st slice 1st+2nd 1st+..+3rd 1st+..+4th 1st+..+5th
xi 0.05 0.10 0.15 0.20 0.25

355-425 εmf 0.41 0.41 0.42 0.42 0.42
(µm) β 3 4 3 3 3

λ.105 0.7 0.7 0.8 0.8 1.1

600−710 εmf 0.40 0.42 0.42 0.42 0.42
(µm) β 4 3 3 3 3

λ.105 0.9 1 1.1 1.1 1
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Figure 7- Pressure drop (a) and standard mean deviation (b) values for perspex, perforated
with 984, 0.3 mm equally spaced holes (◊), metallic mesh (∇ ), and ceramic plate( ).

Though quite different in pressure drop values, as can be seen in Fig. 7 (a), the
distributors didn’t affect significantly bed overall behavior. Still, there is an influence in
registered standard mean deviation of pressure drop measurements, Fig. 7 (b). No explanation
for this discrepancy having been found yet, it will be the object of future works.

4. CONCLUSIONS

This model represents a step further in the physical insight regarding the apparent pressure
loss reduction in bubbling fluidized beds beyond minimum fluidization point, as was
previously presented by Paiva et al. (1998). Recognizing the need for a relation that would
account for the combined influence of the particle diameter, the height of the bed considered
for analysis and the regimes developed in the bed, there was a comprehensive switch from a
crude initial approach towards a better understanding of involved physical phenomena, with a
focus on entrainment of clusters of particles. For superficial velocities values of 0.3...0.5 m/s,
typical of terminal velocities of particles in the range 300...800 µm, a drag coefficient λ was
defined, accounting for both the incipient entrainment  and the effects of neighboring
particles. Different εmf dense phase voidages, as well as different β ratios, were considered for
each slice of the bed.
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